الصفحة الرئيسية
الأقسام العلمية
قسم تقنية المعلومات
قسم علوم الحاسبات
قسم نظم المعلومات
طلابنا
قسم بروشورات الطلاب
وحدة مهارات الحاسب
طلاب الكلية المتفوقين
صفحة الإعلانات الخاصة بطلاب الكلية
خريجو الدفعة الأولى
دفعة 2009
دفعة 2010
دفعة 2011
دفعة 2012
إنجازات الطلاب الخريجين
عمر احمد المحمودي
عمر الحموي
الإرشاد الأكاديمي
معلومات عن الإرشاد الأكاديمي
المر شدون الأكاديميون
معلومات عن تسجيل الموار
حضور المحا ضرات
أسئلة متكررة
أبحاث وأنشطة أكاديمية
الأبحاث
مشاريع بحثية
لعام 1431/1432
لعام 1430/1431
المجموعات البحثية
جائزة أفضل ورقة بحثية في كلية الحاسبات برابغ
المجموعة البحثية الخاصة بعلوم الحاسبات النظرية
المجموعة البحثية الخاصة بالذكاء الإصطناعي والحوسبة
المجموعة البحثية الخاصة بالأحياء الحسابية
مؤتمرات وورش العمل
اكتوبر ٢٠٠٩
نوفمبر ٢٠٠٩
ديسمبر ٢٠٠٩
يناير ٢٠١٠
فبراير ٢٠١٠
مزيد ٢٠١٠
الفصل الثاني 2011
2012
2013
2014
لجنة الإعتماد الأكاديمي ABET
أنشطة نادي كلية الحاسبات برابغ – شطر الطالبات
أنشطة 1434-1435
أنشطة الفصل الثاني1434/ 1435 هـ
النشر العامىي
قسم تقنية المعلومات النشر العامىي
الشراكات المجتمعية
الخدمات الإلكترونية
عمادة تقنية المعلومات
عمادة البحث العلمي
عمادة شؤون المكتبات
عمادة القبول والتسجيل
SIS
تخطيط استراتيجي
نموذج حجز المسرح
الأخبار والفعاليات
آخر الأخبار
عن الكلية
عربي
English
عن الجامعة
القبول
الأكاديمية
البحث والإبتكار
الحياة الجامعية
الخدمات الإلكترونية
صفحة البحث
كلية الحاسبات وتقنية المعلومات برابغ
تفاصيل الوثيقة
نوع الوثيقة
:
مقال في مجلة دورية
عنوان الوثيقة
:
الإسقاط العشوائي وعشوائية تفريد الفرق- فرق أشجار القرار الخطية متعددة المتغيرات
Random Projection Random Discretization Ensembles - Ensembles of Linear Multivariate Decision Trees
الموضوع
:
علوم حاسبات
لغة الوثيقة
:
الانجليزية
المستخلص
:
: In this paper, we present a novel ensemble method random projection random discretization ensembles(RPRDE) to create ensembles of linear multivariate decision trees by using a univariate decision tree algorithm. The present method combines the better computational complexity of a univariate decision tree algorithm with the better representational power of linear multivariate decision trees. We develop random discretization (RD) method that creates random discretized features from continuous features. Random projection (RP) is used to create new features that are linear combinations of original features. A new dataset is created by augmenting discretized features (created by using RD) with features created by using RP. Each decision tree of a RPRD ensemble is trained on one dataset from the pool of these datasets by using a univariate decision tree algorithm. As these multivariate decision trees (because of features created by RP) have more representational power than univariate decision trees, we expect accurate decision trees in the ensemble. Diverse training datasets ensure diverse decision trees in the ensemble. We study the performance of RPRDE against other popular ensemble techniques using C4.5 tree as the base classifier. RPRDE matches or outperforms other popular ensemble methods. Experiments results also suggest that the proposed method is quite robust to the class noise
ردمد
:
1041-4347
اسم الدورية
:
IEEE Transactions on Knowledge and Data Engineering (TKDE)
المجلد
:
26
العدد
:
5
سنة النشر
:
1435 هـ
2014 م
نوع المقالة
:
مقالة علمية
تاريخ الاضافة على الموقع
:
Monday, December 8, 2014
الباحثون
اسم الباحث (عربي)
اسم الباحث (انجليزي)
نوع الباحث
المرتبة العلمية
البريد الالكتروني
امير احمد
Ahmad, Amir
باحث رئيسي
دكتوراه
amirahmad01@gmail.com
كيفن براون
Brown, Gavin
باحث
دكتوراه
gbrown@cs.man.ac.uk
الملفات
اسم الملف
النوع
الوصف
37603.pdf
pdf
الرجوع إلى صفحة الأبحاث